Statistics 210A Lecture 20 Notes

Daniel Raban

November 2, 2021

1 Convergence, Consistency, and Limit Theorems

1.1 A note about linear regression

Last time, we discussed linear regression, where we have $x_i \in \mathbb{R}^d$ and $y_i = x_i^\top \beta + \varepsilon_i$, where $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. Then we can write the density as

$$p(y) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - x_i^\top \beta)^2\right)$$

= $\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} ||y - X\beta||^2\right)$
= $\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} y^\top y + \frac{1}{\sigma^2} (X\beta)^\top y - \frac{\beta^\top X^\top X\beta}{2\sigma}\right)$
= $\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} ||y||^2 + \frac{\beta^\top}{\sigma^2} (X^\top y) - A(\beta)\right).$

Then $X^{\top}y, \|y\|^2$ are sufficient iff $(X^{\top}X)^{-1}X^{\top}y$ and $\|y\|^2$ are sufficient. This is equivalent to the OLS estimator $\hat{\beta}$ and RSS = $\|y\|^2 - \|X\hat{\beta}\|^2$ being sufficient. So we can make a sufficiency reduction to $\hat{\beta}, \hat{\sigma}^2$. Here, one can show that $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y \sim N_d(\beta, \sigma^2(X^{\top}X)^{-1})$ with $\hat{\beta}\amalg\hat{\sigma}^2$. Note that this is *d*-dimensional, rather than *n*-dimensional, so we have a dimensionality reduction.

1.2 Convergence and consistency

Let $X_1, X_2, \dots \in \mathbb{R}^d$ be random variables.

Definition 1.1. X_n converges in probability to c, written $X_n \xrightarrow{p} c$, if

$$\mathbb{P}(\|X_n - c\| > \varepsilon) \to 0 \qquad \forall \varepsilon > 0.$$

This says that X_n becomes roughly constant.

Definition 1.2. X_n converges in distribution to X, written $X_n \xrightarrow{D} X$ or $X_n \implies X$, if $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$ for all bounded, continuous functions f.

This says that when n is large, the distribution of X_n looks a lot like the distribution of X.

Theorem 1.1. If $X_1, X_2, \dots \in \mathbb{R}$, let the CDFs be $F_n(x) = \mathbb{P}(X_n \leq x)$ and $F(x) = \mathbb{P}(X \leq x)$. x. Then $X_n \implies X$ iff $F_n(x) \rightarrow F(x)$ for all x such that F is continuous at x.

This is a weaker version of pointwise convergence, and convergence in distribution is sometimes called **weak convergence**. Here is why we want to only consider continuity points:

Example 1.1. Let $X_n \sim \delta_{1/n}$ and $X \sim \delta_0$. We want our definition to say $X_n \implies X$. The CDFs are

This example suggests that convergence in probability and in distribution are related.

Proposition 1.1. $X_n \xrightarrow{p} c$ if and only if $X_n \implies \delta_c$.

The kind of convergence we care most about in statistics is consistency:

Definition 1.3. If $\mathcal{P}_n = \{P_{\theta,n} : \theta \in \Theta\}$ with $X_n \sim P_{n,\theta}$, then we say that $\delta_n(X_n)$ is **consistent** for $g(\theta)$ if $\delta_n(X_n) \xrightarrow{p} g(\theta)$ for all θ , i.e.

$$\mathbb{P}_{\theta}(\|\delta_n(X_n) - g(\theta)\| > \varepsilon) \to 0.$$

1.3 Limit theorems

1.3.1 The law of large numbers and the central limit theorem

Theorem 1.2 ((Weak) law of large numbers). Let X_1, X_2, \ldots be iid random vectors, and let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. If $\mathbb{E}[||X_i||] < \infty$ and $\mathbb{E}[X_i] = \mu$, then $\overline{X}_n \xrightarrow{p} \mu$.

Remark 1.1. You may have seen a stronger version of this theorem, in which we can prove that $\overline{X}_n \to \mu$ almost surely. In statistics, we are interested in convergence in probability, so this will suffice for our purposes.

Theorem 1.3 (Central limit theorem). Let $X_1, X_2, \dots \in \mathbb{R}^d$ be iid random vectors, and let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Assume that $\mathbb{E}[X_i = \mu \text{ and } \operatorname{Var}(X_i) = \Sigma < \infty$. Then

$$\sqrt{n}(\overline{X}_n - \mu) \implies N_d(0, \Sigma).$$

1.3.2 The continuous mapping theorem

Here are three tools for how we propagate convergence to other kinds of random variables:

Theorem 1.4 (Continuous mapping). Let X_1, X_2, \ldots be random variables, and let g be a continuous function. If $X_n \implies X$, then $g(X_n) \implies g(X)$. In particular, if $X_n \stackrel{p}{\rightarrow} c$, then $g(X_n) \stackrel{p}{\rightarrow} g(c)$.

Proof. If f is bounded and continuous, then $f \circ g$ is bounded and continuous, so

$$\mathbb{E}[f(g(X_n))] = \mathbb{E}[f \circ g(X_n)] \to \mathbb{E}[f \circ g(X_n)] = \mathbb{E}[f(g(X))].$$

1.3.3 Slutsky's theorem

Theorem 1.5 (Slutsky). Assume $X_n \implies X$ and $Y_n \stackrel{p}{\rightarrow} c$. Then

$$X_n + Y_n \implies X + c, \qquad X_n Y_n \implies X \cdot c, \qquad \frac{X_n}{Y_n} \implies \frac{X}{c}$$

(where we assume $c \neq 0$ for the last one).

Proof. Here is a sketch: The first step is to show that $(X_n, Y_n) \implies (X, c)$. Then apply the continuous mapping theorem.

1.3.4 The delta method

Last is the delta method, which informally says that if $X_n \approx (\mu, \sigma^2)$ with σ^2 small and f is differentiable, then $f(X_n) \approx N(f(\mu), \sigma^2 \dot{f}(\mu)^2)$.

Theorem 1.6 (Delta method). If $\sqrt{n}(X_n - \mu) \implies N(0, \sigma^2)$ and f(x) is continuously differentiable at μ , then

$$\sqrt{n}(f(X_n) - f(\mu)) \implies N(0, \sigma^2 \dot{f}(\mu)^2).$$

Proof. Here is the idea: Write $f(X_n) = f(\mu) + \dot{f}(\zeta_n)(X_n - \mu)$, where ζ_n is between μ and X_n (by the mean value theorem). $X_n \xrightarrow{p} \mu$ because $X_n - \mu \xrightarrow{p} 0$. Then $\zeta_n \xrightarrow{p} 0$, as well, because

$$\mathbb{P}(\|\zeta_n - \mu\| > \varepsilon) \le \mathbb{P}(\|X_n - \mu\| > \varepsilon) \to 0.$$

So, by the continuous mapping theorem applied to f,

$$\sqrt{n}(f(X_n) - f(\mu)) = \underbrace{\widehat{f}(\zeta_n)}_{\stackrel{p}{\longrightarrow} \widehat{f}(\mu)} \underbrace{\sqrt{n}(X_n - \mu)}_{\stackrel{N(0,\sigma^2)}{\longrightarrow}},$$

So by Slutsky's theorem, $\sqrt{n}(f(X_n) - f(\mu)) \implies N(0, \sigma^2 \dot{f}(\mu)^2).$

Remark 1.2. We don't need to have \sqrt{n} in the front. The theorem is still true if we replace \sqrt{n} with a_n , as long as $a_n \to \infty$. Where in the proof did we use that $\sqrt{n} \to \infty$? This was necessary for the fact that $X_n \xrightarrow{p} \mu$.

Here is a picture of the delta method:

There is also a multivariate version:

Theorem 1.7 (Delta method, multivariate). If $\sqrt{n}(X_n - \mu) \implies N(0, \Sigma)$ and $f : \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable at μ , then

$$\sqrt{n}(f(X_n) - f(\mu)) \implies N(0, \nabla^{\top} \Sigma \nabla f).$$

The proof is the same as the univariate case.

Example 1.2. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, and let $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} (\nu, \tau^2)$ be independent of the X_i . Suppose we estimate $(\mu + \nu)^2$ with $(\overline{X} + \overline{Y})^2$. We can say a few things:

1. By the law of large numbers, $\overline{X} \xrightarrow{p} \mu$ and $\overline{Y} \xrightarrow{p} \nu$ as $n \to \infty$. The function $f(x, y) = (x+y)^2$ is continuous, so $f(\overline{X}, \overline{Y}) \xrightarrow{p} f(\mu, \nu)$. In other words,

$$(\overline{X} + \overline{Y})^2 \xrightarrow{p} (\mu + \nu)^2,$$

so $(\overline{X} + \overline{Y})^2$ is consistent for $(\mu + \nu)^2$.

2. The central limit theorem says that $\sqrt{n}(\overline{X} - n) \implies N(0, \sigma^2)$ and $\sqrt{n}(\overline{Y} - n) \implies N(0, \tau^2)$. Here,

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = 2(x+y).$$

So the delta method tells us that

$$\begin{split} f(\overline{X},\overline{Y}) &\approx N\left(f(\mu,\nu),\frac{1}{n}\nabla f(\mu,\nu)^{\top} \begin{bmatrix} \sigma^2 & 0\\ 0 & \tau^2 \end{bmatrix} \nabla f \right) \\ &= N\left((\mu+\nu)^2, 4(\mu+\nu)^2(\sigma^2+\tau^2)/n\right). \end{split}$$

More rigorously,

$$\sqrt{n}((\overline{X}+\overline{Y})^2 - (\mu+\nu)^2) \implies N(0,4(\mu+\nu)^2(\sigma^2+\tau^2)).$$

3. What if $(\mu + \nu)^2 = 0$? Then

$$\sqrt{n}((\overline{X}-\overline{Y})^2-(\mu+\nu)^2)\xrightarrow{p}0.$$

We also know

$$\sqrt{nX} + \sqrt{nY} \implies N(0,\sigma^2 + \tau^2),$$

so if we square this sum,

$$n(\overline{X} + \overline{Y})^2 \implies (\sigma^2 + \tau^2)\chi_1^2.$$

If we keep getting things converging to 0, we can keep blowing up the error to find what the distribution of the error rate is in this way.