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1 Convergence, Consistency, and Limit Theorems

1.1 A note about linear regression

Last time, we discussed linear regression, where we have xi ∈ Rd and yi = x>i β+ εi, where

εi
iid∼ N(0, σ2). Then we can write the density as

p(y) =
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(yi − x>i β)2

)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2
‖y −Xβ‖2

)
=

1

(2πσ2)n/2
exp

(
− 1

2σ2
y>y +

1

σ2
(Xβ)>y − β>X>Xβ

2σ

)
=

1

(2πσ2)n/2
exp

(
− 1

2σ2
‖y‖2 +

β>

σ2
(X>y)−A(β)

)
.

Then X>y, ‖y‖2 are sufficient iff (X>X)−1X>y and ‖y‖2 are sufficient. This is equiv-
alent to the OLS estimator β̂ and RSS = ‖y‖2 − ‖Xβ̂‖2 being sufficient. So we can
make a suffiicencty reduction to β̂, σ̂2. Here, one can show that β̂ = (X>X)−1X>y ∼
Nd(β, σ

2(X>X)−1)with β̂qσ̂2. Note that this is d-dimensional, rather than n-dimensional,
so we have a dimensionality reduction.

1.2 Convergence and consistency

Let X1, X2, · · · ∈ Rd be random variables.

Definition 1.1. Xn converges in probability to c, written Xn
p−→ c, if

P(‖Xn − c‖ > ε)→ 0 ∀ε > 0.

This says that Xn becomes roughly constant.
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Definition 1.2. Xn converges in distribution to X, written Xn
D−→ X or Xn =⇒ X,

if E[f(Xn)]→ E[f(X)] for all bounded, continuous functions f .

This says that when n is large, the distribution of Xn looks a lot like the distribution
of X.

Theorem 1.1. If X1, X2, · · · ∈ R, let the CDFs be Fn(x) = P(Xn ≤ x) and F (x) = P(X ≤
x). Then Xn =⇒ X iff Fn(x)→ F (x) for all x such that F is continuous at x.

This is a weaker version of pointwise convergence, and convergence in distribution is
sometimes called weak convergence. Here is why we want to only consider continuity
points:

Example 1.1. Let Xn ∼ δ1/n and X ∼ δ0. We want our definition to say Xn =⇒ X.
The CDFs are

Fx(x) = 1{1/n≤x}, F (x) = 1{0≤x}.

This example suggests that convergence in probability and in distribution are related.

Proposition 1.1. Xn
p−→ c if and only if Xn =⇒ δc.

The kind of convergence we care most about in statistics is consistency:

Definition 1.3. If Pn = {Pθ,n : θ ∈ Θ} with Xn ∼ Pn,θ, then we say that δn(Xn) is

consistent for g(θ) if δn(Xn)
p−→ g(θ) for all θ, i.e.

Pθ(‖δn(Xn)− g(θ)‖ > ε)→ 0.

1.3 Limit theorems

1.3.1 The law of large numbers and the central limit theorem

Theorem 1.2 ((Weak) law of large numbers). Let X1, X2, . . . be iid random vectors, and

let Xn = 1
n

∑n
i=1Xi. If E[‖Xi‖] <∞ and E[Xi] = µ, then Xn

p−→ µ.

Remark 1.1. You may have seen a stronger version of this theorem, in which we can prove
that Xn → µ almost surely. In statistics, we are interested in convergence in probability,
so this will suffice for our purposes.

Theorem 1.3 (Central limit theorem). Let X1, X2, · · · ∈ Rd be iid random vectors, and
let Xn = 1

n

∑n
i=1Xi. Assume that E[Xi = µ and Var(Xi) = Σ <∞. Then

√
n(Xn − µ) =⇒ Nd(0,Σ).
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1.3.2 The continuous mapping theorem

Here are three tools for how we propagate convergence to other kinds of random variables:

Theorem 1.4 (Continuous mapping). Let X1, X2, . . . be random variables, and let g be

a continuous function. If Xn =⇒ X, then g(Xn) =⇒ g(X). In particular, if Xn
p−→ c,

then g(Xn)
p−→ g(c).

Proof. If f is bounded and continuous, then f ◦ g is bounded and continuous, so

E[f(g(Xn))] = E[f ◦ g(Xn)]→ E[f ◦ g(Xn)] = E[f(g(X))].

1.3.3 Slutsky’s theorem

Theorem 1.5 (Slutsky). Assume Xn =⇒ X and Yn
p−→ c. Then

Xn + Yn =⇒ X + c, XnYn =⇒ X · c, Xn

Yn
=⇒ X

c

(where we assume c 6= 0 for the last one).

Proof. Here is a sketch: The first step is to show that (Xn, Yn) =⇒ (X, c). Then apply
the continuous mapping theorem.

1.3.4 The delta method

Last is the delta method, which informally says that if Xn ≈ (µ, σ2) with σ2 small and f
is differentiable, then f(Xn) ≈ N(f(µ), σ2ḟ(µ)2).

Theorem 1.6 (Delta method). If
√
n(Xn − µ) =⇒ N(0, σ2) and f(x) is continuously

differentiable at µ, then

√
n(f(Xn)− f(µ)) =⇒ N(0, σ2ḟ(µ)2).

Proof. Here is the idea: Write f(Xn) = f(µ) + ḟ(ζn)(Xn − µ), where ζn is between µ and

Xn (by the mean value theorem). Xn
p−→ µ because Xn − µ

p−→ 0. Then ζn
p−→ 0, as well,

because
P(‖ζn − µ‖ > ε) ≤ P(‖Xn − µ‖ > ε)→ 0.

So, by the continuous mapping theorem applied to ḟ ,

√
n(f(Xn)− f(µ)) = ḟ(ζn)︸ ︷︷ ︸

p−→ḟ(µ)

√
n(Xn − µ)︸ ︷︷ ︸
=⇒ N(0,σ2)

,

So by Slutsky’s theorem,
√
n(f(Xn)− f(µ)) =⇒ N(0, σ2ḟ(µ)2).
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Remark 1.2. We don’t need to have
√
n in the front. The theorem is still true if we

replace
√
n with an, as long as an → ∞. Where in the proof did we use that

√
n → ∞?

This was necessary for the fact that Xn
p−→ µ.

Here is a picture of the delta method:

There is also a multivariate version:

Theorem 1.7 (Delta method, multivariate). If
√
n(Xn−µ) =⇒ N(0,Σ) and f : Rd → R

is continuously differentiable at µ, then

√
n(f(Xn)− f(µ)) =⇒ N(0,∇>Σ∇f).

The proof is the same as the univariate case.

Example 1.2. Let X1, . . . , Xn
iid∼ (µ, σ2), and let Y1, . . . , Yn

iid∼ (ν, τ2) be independent of
the Xi. Suppose we estimate (µ+ ν)2 with (X + Y )2. We can say a few things:

1. By the law of large numbers, X
p−→ µ and Y

p−→ ν as n→∞. The function f(x, y) =

(x+ y)2 is continuous, so f(X,Y )
p−→ f(µ, ν). In other words,

(X + Y )2
p−→ (µ+ ν)2,

so (X + Y )2 is consistent for (µ+ ν)2.
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2. The central limit theorem says that
√
n(X − n) =⇒ N(0, σ2) and

√
n(Y − n) =⇒

N(0, τ2). Here,
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 2(x+ y).

So the delta method tells us that

f(X,Y ) ≈ N
(
f(µ, ν),

1

n
∇f(µ, ν)>

[
σ2 0
0 τ2

]
∇f
)

= N
(
(µ+ ν)2, 4(µ+ ν)2(σ2 + τ2)/n

)
.

More rigorously,

√
n((X + Y )2 − (µ+ ν)2) =⇒ N(0, 4(µ+ ν)2(σ2 + τ2)).

3. What if (µ+ ν)2 = 0? Then

√
n((X − Y )2 − (µ+ ν)2)

p−→ 0.

We also know √
nX +

√
nY =⇒ N(0, σ2 + τ2),

so if we square this sum,

n(X + Y )2 =⇒ (σ2 + τ2)χ2
1.

If we keep getting things converging to 0, we can keep blowing up the error to find
what the distribution of the error rate is in this way.
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