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1 Convergence, Consistency, and Limit Theorems

1.1 A note about linear regression

Last time, we discussed linear regression, where we have z; € R? and y; = xiTﬂ + &;, where
iid . .
g; ~ N(0,0%). Then we can write the density as
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Then X Ty, ||ly||? are sufficient iff (XTX)"'X Ty and ||y||?> are sufficient. This is equiv-
alent to the OLS estimator 3 and RSS = |y||2 — || X3||> being sufficient. So we can
make a suffiicencty reduction to B, 2. Here, one can show that B = (XTX)'XTy ~
Ny(B,0%(X T X)~1)with 1152, Note that this is d-dimensional, rather than n-dimensional,
so we have a dimensionality reduction.

1.2 Convergence and consistency

Let X1, X5, --- € R? be random variables.

Definition 1.1. X,, converges in probability to ¢, written X, LN c, if
P(| X, —¢|| >e) -0  Ve>0.

This says that X,, becomes roughly constant.



Definition 1.2. X,, converges in distribution to X, written X, P—) XorX, = X,
if E[f(X,)] — E[f(X)] for all bounded, continuous functions f.

This says that when n is large, the distribution of X,, looks a lot like the distribution
of X.

Theorem 1.1. If X1, Xa,--- € R, let the CDF's be F,,(v) =P(X,, < z) and F(z) =P(X <
x). Then X,, = X iff F,,(x) — F(x) for all x such that F is continuous at x.

This is a weaker version of pointwise convergence, and convergence in distribution is
sometimes called weak convergence. Here is why we want to only consider continuity
points:

Example 1.1. Let X;, ~ d;/, and X ~ §p. We want our definition to say X,, = X.
The CDFs are
Fr(2) = 1{im<ay,  F(2) = Lyo<ay-

Fc I F,

O 0

This example suggests that convergence in probability and in distribution are related.
Proposition 1.1. X, L if and only if X,, = .
The kind of convergence we care most about in statistics is consistency:

Definition 1.3. If P, = {Fy, : § € ©} with X,, ~ P, 4, then we say that §,(X,) is
consistent for g(0) if 6,(X,) 2 g(0) for all 6, i.c.

Po([10n(Xn) —g(@)] > €) — 0.

1.3 Limit theorems
1.3.1 The law of large numbers and the central limit theorem

Theorem 1.2 ((Weak) law of large numbers). Let X1, Xo,... be iid random vectors, and
let X, = 230 X;. IfE[|X]]] < 0o and E[X;] = p, then X, 5.

Remark 1.1. You may have seen a stronger version of this theorem, in which we can prove
that X,, — p almost surely. In statistics, we are interested in convergence in probability,
so this will suffice for our purposes.

Theorem 1.3 (Central limit theorem). Let X3, Xo,--- € RY be iid random vectors, and
let X,, = %2?21 X;. Assume that E[X; = p and Var(X;) = ¥ < co. Then

Vi(Xn —p) = Na(0,%).



1.3.2 The continuous mapping theorem

Here are three tools for how we propagate convergence to other kinds of random variables:

Theorem 1.4 (Continuous mapping). Let X1, Xs,... be random variables, and let g be
a continuous function. If X, = X, then g(X,) = g¢(X). In particular, if X, & ¢,
then g(Xn) 2 g(c).

Proof. If f is bounded and continuous, then f o g is bounded and continuous, so
E[f(9(Xn))] = E[f 0 g(Xn)] = E[f 0 g(Xn)] = E[f(9(X))]. O

1.3.3 Slutsky’s theorem
Theorem 1.5 (Slutsky). Assume X,, = X and Y, 2 c¢. Then

Xn:>§

X,+Y, = X +c, XY, = X -c —
Y, c

(where we assume c # 0 for the last one).

Proof. Here is a sketch: The first step is to show that (X,,Y,) = (X,c¢). Then apply
the continuous mapping theorem. O

1.3.4 The delta method

Last is the delta method, which informally says that if X, ~ (1, 02) with o2 small and f
is differentiable, then f(X,) ~ N(f(u),o%f(u)?).

Theorem 1.6 (Delta method). If \/n(X,, — ) = N(0,02) and f(z) is continuously
differentiable at u, then

Vi(f(Xn) = (1)) = N(0,0%f(1)*).

Proof. Here is the idea: Write f(X,) = f(u) + f(Ca)(Xn — 1), where ¢, is between u and
X,, (by the mean value theorem). X, LN  because X, — u 2, 0. Then Cn 20, as well,

because
P(I¢n — pll > &) <P(| Xn — pf > &) = 0.

So, by the continuous mapping theorem applied to f ,

V(f(Xn) = f(w) = @ V(Xn — ),
Ly fy = N

So by Slutsky’s theorem, \/n(f(X,) — f(r)) = N(0,02f(1)?). O



Remark 1.2. We don’t need to have /n in the front. The theorem is still true if we
replace \/n with a,, as long as a, — co. Where in the proof did we use that \/n — oo?
This was necessary for the fact that X, 2 1

Here is a picture of the delta method:
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There is also a multivariate version:

Theorem 1.7 (Delta method, multivariate). If v/n(X, —u) = N(0,%) and f : R* - R
s continuously differentiable at u, then

Vi(f(Xn) = f(n)) = N(0,V'EV/).

The proof is the same as the univariate case.
Example 1.2. Let X1,..., X, g (p,02), and let Y1,...,Y, id (v,72) be independent of
the X;. Suppose we estimate (u + v)? with (X +Y)2. We can say a few things:

1. By the law of large numbers, X & y and Y £ v as n — oo. The function f(z,y) =
(z 4+ y)? is continuous, so f(X,Y) 2 f(u,v). In other words,

(X+Y)2 5 (u+v)?,

so (X +Y)? is consistent for (u + v)2.



2. The central limit theorem says that \/n(X —n) = N(0,0?) and v/n(Y —n) =
N(0,72). Here,
aof of
gJ =9 =2 .
oz DY) = 5, (@:y) =2 +y)

So the delta method tells us that

FET) %N () 2950007 | 5 01)
=N ((n+v)*4n+v)*(0® +7°)/n) .

More rigorously,

V(X +Y)? = (n+v)?) = N(0,4(u +v)*(0® +77)).

3. What if (4 +v)? = 0? Then

V(X =Y = (u+ )2 B 0,

We also know
VX +v/nY = N(0,0% + 72%),

so if we square this sum,
X +Y)? = (6*+7H)x%

If we keep getting things converging to 0, we can keep blowing up the error to find
what the distribution of the error rate is in this way.
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